哈佛大学最新研究成果:Instagram照片可预测抑郁症指标
作为拥有7亿月活用户的Instagram,平台上的用户每天为其贡献近1亿新帖,近期其新用户吸纳率更是直接超过了Twitter、YouTube、linkedIn甚至Facebook 。Instagram 除了给大家提供分享生活的平台之外,也逐渐成为各大高校和机构用于研究的重要样本。
据外媒 The Verge 12日报道,最新一项研究表明,抑郁症患者在社交平台上更倾向于分享更多照片,使用更少滤镜,而分享的照片颜色更偏深色和灰色。据本周发表在EPJ Data Science杂志上的一项研究结果表明,Instagram和其他社交平台网站可用来筛查人类精神疾病。
据研究人员发表在 EPJ Data Science 上的论文显示,他们使用了机器学习工具成功识别出抑郁症的标志,并使用颜色分析、元数据组件和面部检测算法,从 43,950 张 Instagram 照片中计算提取统计特征,而每张照片的色调、亮度以及使用的滤镜都是其重要的分析维度。
研究结果表明,患有抑郁倾向的用户更倾向于发布更多照片,且颜色多为蓝色、灰色和深色;其次,他们使用的滤镜也更少;当他们使用一个滤镜时,通常倾向于选择「Inkwell」,即为「黑白」效果。而精神健康的用户则更喜欢用「Valencia」滤镜,这样可以使照片色彩变得更为明亮。另外,患有抑郁倾向的用户也更喜欢发布人脸特写照片,但与健康的用户相比,其分享的每张照片出现的人脸数量更少。这可能表明,抑郁症患者更喜欢在小范围的社交环境中和人交往。
同时,研究结果还表明,在利用机器学习分析了这些照片得到的模型之后,所得模型的表现优于普通医师诊断抑郁症的平均成功率。